

Passive DAS

PASSIVE LOW-PIM KOMPONENTEN FÜR DISTRIBUTED ANTENNA SYSTEMS

In-Building Coverage Solutions von Telegärtner

DISTRIBUTED ANTENNA SYSTEMS

Für eine zuverlässige Abdeckung.

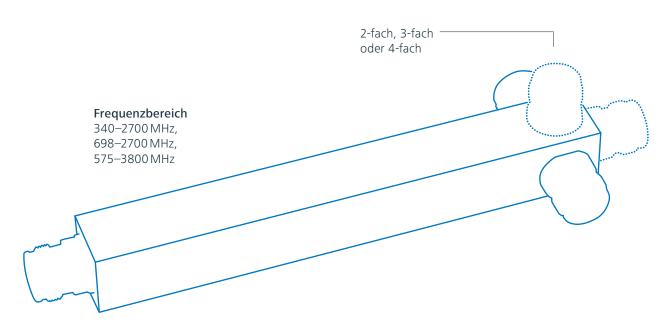
Jeder möchte heute ständig erreichbar sein. Deshalb dürfen Mobilfunkverbindungen nicht am Gebäudeeingang enden. Gerade in großen Gebäuden ist eine flächendeckende Netzabdeckung notwendig – immer und überall.

Signalabdeckung ist eine der wichtigsten Anforderungen an Mobilfunknetze. Dies trifft auf alle Architekturen zu, von Makro-, über Mikro- und Small- bis hin zu Pico-Zellen. Um alle Nutzer in einem Mobilfunknetz mit einer zufriedenstellenden Sprach- und Datenverbindung zu versorgen, muss auch die Abdeckung innerhalb größerer Bauwerke sichergestellt werden. Insbesondere auf den unteren Ebenen größerer Gebäude ist das Mobilfunksignal

in der Regel schwach, wenn kein Distributed Antenna System (DAS) installiert wurde. Distributed Antenna Systems werden eingesetzt, um eine optimale Netzabdeckung und maximale Kapazitäten in möglichst allen Bereichen von größeren Gebäuden wie Einkaufszentren, Stadien, Konzerthallen, Flughäfen, Hotels, (unterirdischen) Bahnhöfen oder großen Bürokomplexen sicherzustellen.

Telegärtner bietet ein breites Portfolio an passiven DAS-Komponenten wie Power Splitter, Richtkoppler, Tapper oder Abschlusswiderstande an, um den Kunden die optimalen Lösungen für die heterogenen Rahmenbedingungen einesjeden Einsatzortes bieten zu können. Aufgrund der immer höheren Ansprüche bezüglich der passiven Intermodulation konzentriert sich Telegärtner im Standardportfolio auf Low-PIM-

Komponenten (≤-161 dBc). Zudem werden zukunftsfähige Komponenten für Frequenzen bis zu 3,8 GHz (5G-Anwendungen) angeboten. Um Kundenanfragen schnell bedienen zu können, sollen im Lager verfügbare Komponenten innerhalb von 24 Stunden für den Versand vorbereitet werden. Kundenspezifische Lösungen sind zudem auf Anfrage verfügbar.


POVER SPLITTER

Power Splitter mit N- oder 4.3-10-Steckverbindern.

Power Splitter werden verwendet, um ein Signal symmetrisch von einem Eingangsport auf zwei, drei oder vier Ausgangsports zu verteilen. Alle gelisteten Splitter sind für PIM-sensible Anwendungen geeignet (≤-161 dBc) und zeichnen sich durch eine hohe Leistungskapazität sowie ein niedriges VSWR aus.

Iow-PIM



Artikelnummer	Steckverbinder	Frequenzbereich	Teilung	Teilungs- verlust	PIM (@2 × 43 dBm)	ø Anschluss- leistung	Schutzart
J01029A0019	N-Buchse	340-2700 MHz	2-fach	3 dB	≤ -161 dBc	200 W	IP65
J01029A0020	N-Buchse	340-2700 MHz	3-fach	4.8 dB	≤ -161 dBc	200 W	IP65
J01029A0021	N-Buchse	340-2700 MHz	4-fach	6 dB	≤ -161 dBc	200 W	IP65
J01029A0004	N-Buchse	698-2700 MHz	2-fach	3 dB	≤ -161 dBc	200 W	IP65
J01029A0005	N-Buchse	698-2700 MHz	3-fach	4.8 dB	≤ -161 dBc	200 W	IP65
J01029A0006	N-Buchse	698-2700 MHz	4-fach	6 dB	≤ -161 dBc	200 W	IP65
J01029A0007	N-Buchse	575-3800 MHz	2-fach	3 dB	≤ -161 dBc	200 W	IP65
J01029A0008	N-Buchse	575-3800 MHz	3-fach	4.8 dB	≤ -161 dBc	200 W	IP65
J01029A0009	N-Buchse	575-3800 MHz	4-fach	6 dB	≤ -161 dBc	200 W	IP65
J01447A0030	4.3-10-Buchse	340-2700 MHz	2-fach	3 dB	≤ -161 dBc	300 W	IP65
J01447A0031	4.3-10-Buchse	340-2700 MHz	3-fach	4.8 dB	≤ -161 dBc	300 W	IP65
J01447A0032	4.3-10-Buchse	340-2700 MHz	4-fach	6 dB	≤ -161 dBc	300 W	IP65
J01447A0001	4.3-10-Buchse	698–2700 MHz	2-fach	3 dB	≤ -161 dBc	300 W	IP65
J01447A0002	4.3-10-Buchse	698–2700 MHz	3-fach	4.8 dB	≤ -161 dBc	300 W	IP65
J01447A0003	4.3-10-Buchse	698–2700 MHz	4-fach	6 dB	≤ -161 dBc	300W	IP65
J01447A0004	4.3-10-Buchse	575–3800 MHz	2-fach	3 dB	≤ -161 dBc	300 W	IP65
J01447A0005	4.3-10-Buchse	575–3800 MHz	3-fach	4.8 dB	≤ -161 dBc	300W	IP65
J01447A0006	4.3-10-Buchse	575-3800 MHz	4-fach	6 dB	≤ -161 dBc	300W	IP65
H06000A0084	L-förmige Halterung für Splitter enthalten						

RICHTKOPPLER

Richtkoppler mit N- oder 4.3-10-Steckverbindern.

Richtkoppler können für die asymmetrische Aufteilung eines Signals verwendet werden. Typischerweise wird ein Großteil der Leistung weitergeleitet und ein kleinerer Teil abgezweigt. Durch die hohe Richtwirkung werden die durch den Hauptpfad-Ausgangsport eintreffenden Signale im Richtkoppler abgeschlossen, damit diese die Signalübertragung zum gekoppelten Ausgangsport nicht stören. Die Richtkoppler zeichnen sich durch gute Rückflussdämpfungswerte aus und sind für PIM-sensible Anwendungen geeignet.

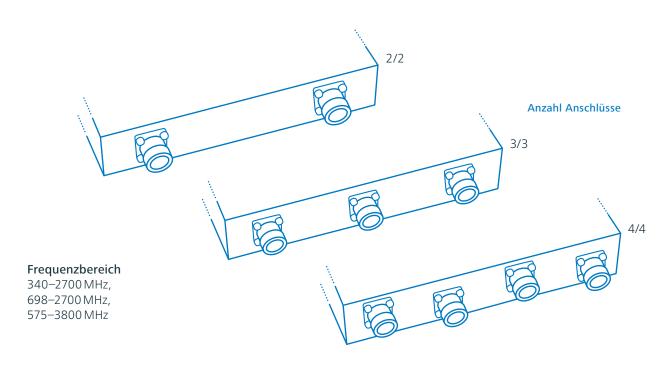


Artikelnummer	Steckverbinder	Frequenzbereich	Kopplung	PIM (@2×43 dBm)	ø Anschluss- leistung	Schutzart
J01024A0031	N-Buchse	340-2700 MHz	3 dB	≤ -161 dBc	200W	IP65
J01024A0032	N-Buchse	340-2700 MHz	6 dB	≤ -161 dBc	200 W	IP65
J01024A0033	N-Buchse	340-2700 MHz	8 dB	≤ -161 dBc	200 W	IP65
J01024A0034	N-Buchse	340-2700 MHz	10 dB	≤ -161 dBc	200 W	IP65
J01024A0035	N-Buchse	340-2700 MHz	12 dB	≤ -161 dBc	200 W	IP65
J01024A0036	N-Buchse	340-2700 MHz	15 dB	≤ -161 dBc	200 W	IP65
J01024A0037	N-Buchse	340-2700 MHz	20 dB	≤ -161 dBc	200 W	IP65
J01024A0038	N-Buchse	340-2700 MHz	30 dB	≤ -161 dBc	200 W	IP65
J01024A0030	N-Buchse	698-2700 MHz	3 dB	≤ -161 dBc	200 W	IP65
J01024A0016	N-Buchse	698-2700 MHz	6 dB	≤ -161 dBc	200 W	IP65
J01024A0017	N-Buchse	698-2700 MHz	8 dB	≤ -161 dBc	200 W	IP65
J01024A0018	N-Buchse	698-2700 MHz	10 dB	≤ -161 dBc	200 W	IP65
J01024A0019	N-Buchse	698-2700 MHz	12 dB	≤ -161 dBc	200 W	IP65
J01024A0020	N-Buchse	698-2700 MHz	15 dB	≤ -161 dBc	200 W	IP65
J01024A0021	N-Buchse	698–2700 MHz	20 dB	≤ -161 dBc	200 W	IP65
J01024A0022	N-Buchse	698-2700 MHz	30 dB	≤ -161 dBc	200 W	IP65
J01024A0039	N-Buchse	575-3800 MHz	3 dB	≤ -161 dBc	200 W	IP65
J01024A0023	N-Buchse	575-3800 MHz	6 dB	≤ -161 dBc	200 W	IP65
J01024A0024	N-Buchse	575-3800 MHz	8 dB	≤ -161 dBc	200 W	IP65
J01024A0025	N-Buchse	575-3800 MHz	10 dB	≤ -161 dBc	200 W	IP65
J01024A0026	N-Buchse	575-3800 MHz	12 dB	≤ -161 dBc	200 W	IP65
J01024A0027	N-Buchse	575-3800 MHz	15 dB	≤ -161 dBc	200 W	IP65
J01024A0028	N-Buchse	575-3800 MHz	20 dB	≤ -161 dBc	200 W	IP65
J01024A0029	N-Buchse	575-3800 MHz	30 dB	≤ -161 dBc	200 W	IP65
J01447A0034	4.3-10-Buchse	340-2700 MHz	3 dB	≤ -161 dBc	300W	IP65
J01447A0035	4.3-10-Buchse	340-2700 MHz	6 dB	≤ -161 dBc	300W	IP65
J01447A0036	4.3-10-Buchse	340-2700 MHz	8 dB	≤ -161 dBc	300W	IP65
J01447A0037	4.3-10-Buchse	340-2700 MHz	10 dB	≤ -161 dBc	300W	IP65
J01447A0038	4.3-10-Buchse	340-2700 MHz	12 dB	≤ -161 dBc	300 W	IP65
J01447A0039	4.3-10-Buchse	340-2700 MHz	15 dB	≤ -161 dBc	300 W	IP65
J01447A0040	4.3-10-Buchse	340-2700 MHz	20 dB	≤ -161 dBc	300 W	IP65
J01447A0041	4.3-10-Buchse	340-2700 MHz	30 dB	≤ -161 dBc	300 W	IP65
J01447A0033	4.3-10-Buchse	698-2700 MHz	3 dB	≤ -161 dBc	300 W	IP65
J01447A0007	4.3-10-Buchse	698-2700 MHz	6 dB	≤ -161 dBc	300 W	IP65
J01447A0008	4.3-10-Buchse	698-2700 MHz	8 dB	≤ -161 dBc	300 W	IP65
J01447A0009	4.3-10-Buchse	698–2700 MHz	10 dB	≤ -161 dBc	300 W	IP65
J01447A0010	4.3-10-Buchse	698–2700 MHz	12 dB	≤ -161 dBc	300 W	IP65
J01447A0011	4.3-10-Buchse	698–2700 MHz	15 dB	≤ -161 dBc	300W	IP65
J01447A0012	4.3-10-Buchse	698–2700 MHz	20 dB	≤ -161 dBc	300 W	IP65
J01447A0013	4.3-10-Buchse	698–2700 MHz	30 dB	≤ -161 dBc	300W	IP65
J01447A0054	4.3-10-Buchse	575-3800 MHz	3 dB	≤ -161 dBc	300 W	IP65
J01447A0014	4.3-10-Buchse	575-3800 MHz	6 dB	≤ -161 dBc	300 W	IP65
J01447A0015	4.3-10-Buchse	575-3800 MHz	8 dB	≤ -161 dBc	300 W	IP65
J01447A0016	4.3-10-Buchse	575-3800 MHz	10 dB	≤ -161 dBc	300 W	IP65
J01447A0017	4.3-10-Buchse	575-3800 MHz	12 dB	≤ -161 dBc	300 W	IP65
J01447A0018	4.3-10-Buchse	575-3800 MHz	15 dB	≤ -161 dBc	300 W	IP65
J01447A0019	4.3-10-Buchse	575-3800 MHz	20 dB	≤ -161 dBc	300 W	IP65
J01447A0020	4.3-10-Buchse	575-3800 MHz	30 dB	≤ -161 dBc	300 W	IP65

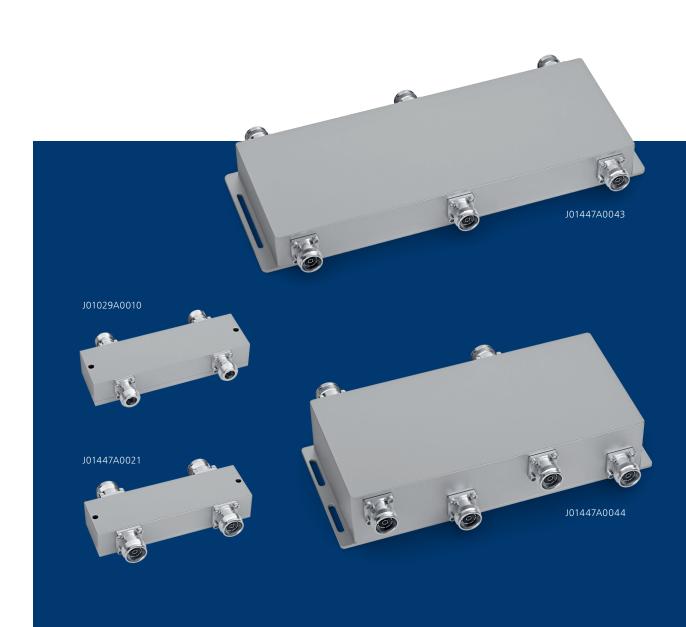
TAPPER

Tapper mit N- oder 4.3-10-Steckverbindern.

Tapper werden für das Abzweigen einer Signalportion von einer Hauptübertragungsstrecke verwendet. Sie unterscheiden sich von Richtkopplern insbesondere durch die fehlende Richtwirkung, geringere Größe und den günstigeren Preis, wobei auch hier ein niedriges PIM-Niveau von <-161 dRc im Fokus steht


Artikelnummer	Steckverbinder	Frequenzbereich	Kopplung	PIM (@2×43 dBm)	ø Anschluss- leistung	Schutzart
J01029A0026	N-Buchse	340-960 / 1710-2700 MHz	3 dB	≤ -161 dBc	200 W	IP65
J01029A0027	N-Buchse	340-960 / 1710-2700 MHz	6 dB	≤ -161 dBc	200 W	IP65
J01029A0028	N-Buchse	340-960 / 1710-2700 MHz	8 dB	≤ -161 dBc	200 W	IP65
J01029A0029	N-Buchse	340-960 / 1710-2700 MHz	10 dB	≤ -161 dBc	200 W	IP65
J01029A0030	N-Buchse	340-960 / 1710-2700 MHz	13 dB	≤ -161 dBc	200 W	IP65
J01029A0031	N-Buchse	340-960 / 1710-2700 MHz	15 dB	≤ -161 dBc	200 W	IP65
J01029A0032	N-Buchse	340-960 / 1710-2700 MHz	20 dB	≤ -161 dBc	200 W	IP65
J01029A0033	N-Buchse	340-960 / 1710-2700 MHz	30 dB	≤ -161 dBc	200 W	IP65
J01029A0025	N-Buchse	698-960 / 1710-2700 MHz	3 dB	≤ -161 dBc	200 W	IP65
J01029A0012	N-Buchse	698-960 / 1710-2700 MHz	6 dB	≤ -161 dBc	200 W	IP65
J01029A0013	N-Buchse	698-960 / 1710-2700 MHz	8 dB	≤ -161 dBc	200 W	IP65
J01029A0014	N-Buchse	698-960 / 1710-2700 MHz	10 dB	≤ -161 dBc	200 W	IP65
J01029A0015	N-Buchse	698-960 / 1710-2700 MHz	13 dB	≤ -161 dBc	200 W	IP65
J01029A0016	N-Buchse	698-960 / 1710-2700 MHz	15 dB	≤ -161 dBc	200 W	IP65
J01029A0017	N-Buchse	698-960 / 1710-2700 MHz	20 dB	≤ -161 dBc	200 W	IP65
J01029A0018	N-Buchse	698-960 / 1710-2700 MHz	30 dB	≤ -161 dBc	200 W	IP65
J01447A0045	4.3-10-Buchse	340-960 / 1710-2700 MHz	3 dB	≤ -161 dBc	300W	IP65
J01447A0046	4.3-10-Buchse	340-960 / 1710-2700 MHz	6 dB	≤ -161 dBc	300 W	IP65
J01447A0047	4.3-10-Buchse	340-960 / 1710-2700 MHz	8 dB	≤ -161 dBc	300 W	IP65
J01447A0048	4.3-10-Buchse	340-960 / 1710-2700 MHz	10 dB	≤ -161 dBc	300 W	IP65
J01447A0049	4.3-10-Buchse	340-960 / 1710-2700 MHz	13 dB	≤ -161 dBc	300 W	IP65
J01447A0050	4.3-10-Buchse	340-960 / 1710-2700 MHz	15 dB	≤ -161 dBc	300 W	IP65
J01447A0051	4.3-10-Buchse	340-960 / 1710-2700 MHz	20 dB	≤ -161 dBc	300 W	IP65
J01447A0052	4.3-10-Buchse	340-960 / 1710-2700 MHz	30 dB	≤ -161 dBc	300 W	IP65
J01447A0053	4.3-10-Buchse	698-960 / 1710-2700 MHz	3 dB	≤ -161 dBc	300 W	IP65
J01447A0023	4.3-10-Buchse	698-960 / 1710-2700 MHz	6 dB	≤ -161 dBc	300 W	IP65
J01447A0024	4.3-10-Buchse	698-960 / 1710-2700 MHz	8 dB	≤ -161 dBc	300 W	IP65
J01447A0025	4.3-10-Buchse	698-960 / 1710-2700 MHz	10 dB	≤ -161 dBc	300 W	IP65
J01447A0026	4.3-10-Buchse	698-960 / 1710-2700 MHz	13 dB	≤ -161 dBc	300 W	IP65
J01447A0027	4.3-10-Buchse	698-960 / 1710-2700 MHz	15 dB	≤ -161 dBc	300 W	IP65
J01447A0028	4.3-10-Buchse	698-960 / 1710-2700 MHz	20 dB	≤ -161 dBc	300 W	IP65
J01447A0029	4.3-10-Buchse	698-960 / 1710-2700 MHz	30 dB	≤ -161 dBc	300 W	IP65
H06000A0085	W-förmige Halte	erung für Tapper enthalten				

HYBRID-KOPPLER


Hybrid-Koppler mit N- oder 4.3-10-Steckverbindern.

Hybrid-Koppler werden für das Zusammenführen unterschiedlicher Signale aus verschiedenen Pfaden in einen oder mehrere gemeinsame Pfade verwendet. Wie für alle Standard-Komponenten konzentriert sich Telegärtner hier auf Komponenten mit niedrigen PIM-, VSWR- und Einfügedämpfungswerten.

Artikelnummer	Steckverbinder	Frequenzbereich	Anzahl Anschlüsse In/Out	PIM (@2×43 dBm)	ø Anschluss- leistung je Anschluss	Schutzart
J01029A0022	N-Buchse	340-2700 MHz	2/2	≤ -161 dBc	200 W	IP65
J01029A0010	N-Buchse	698-2700 MHz	2/2	≤ -161 dBc	200 W	IP65
J01029A0011	N-Buchse	575-3800 MHz	2/2	≤ -161 dBc	200 W	IP65
J01029A0023	N-Buchse	698-2700 MHz	3/3	≤ -155 dBc	200 W	IP65
J01029A0024	N-Buchse	698-2700 MHz	4/4	≤ -161 dBc	200 W	IP65
J01447A0042	4.3-10-Buchse	340-2700 MHz	2/2	≤ -161 dBc	300W	IP65
J01447A0021	4.3-10-Buchse	698-2700 MHz	2/2	≤ -161 dBc	300W	IP65
J01447A0022	4.3-10-Buchse	575-3800 MHz	2/2	≤ -161 dBc	300W	IP65
J01447A0043	4.3-10-Buchse	698-2700 MHz	3/3	≤ -155 dBc	300W	IP65
J01447A0044	4.3-10-Buchse	698–2700 MHz	4/4	≤ -161 dBc	300 W	IP65

ABSCHLUSS-WIDERSTÄNDE

Abschlusswiderstände mit N- oder 4.3-10-Steckverbindern.

Abschlusswiderstände werden zum Abschließen überschüssiger Leistung am Ende einer Übertragungsstrecke verwendet. Sie können zum Abschließen eines nicht benötigten Ports oder für Diagnosezwecke eingesetzt werden, möglichst ohne dabei Leistung zu reflektieren. Abgesehen von Standard-Abschlusswiderständen bietet Telegärtner insbesondere für passive DAS-Anwendungen Low-PIM-Abschlusswiderstände für Leistungen bis 200 W an.

J01026A0022

Artikelnummer	Steckverbinder	erbinder Frequenzbereich		PIM (@2×43 dBm)
J01026A0012	N-Stecker	0-6 GHz	1 W	_
J01026A0010	N-Stecker	0-18 GHz	2 W	-
J01026A0022	N-Stecker	0-6 GHz 10 W		-
J01444A0001	4.3-10-Stecker (Screw)	0-6 GHz	1 W	_
J01444A0000	4.3-10-Stecker (Screw)	0-7.5 GHz	2W	_
J01444A3000	4.3-10-Stecker (Push-Pull)	0-7.5 GHz	2W	_
J01444A0002	4.3-10-Stecker (Screw)	0-6 GHz	10 W	-
J01444A0011	4.3-10-Stecker (Screw)	650-3000 MHz	10 W	≤ -161 dBc
J01444A0003	4.3-10-Stecker (Screw)	650-3000 MHz	30 W	≤ -161 dBc
J01444A0004	4.3-10-Stecker (Screw)	698-2700 MHz	200 W	≤ -161 dBc

H06000A0083 Halterungen-Set für Hochleistungs-Low-PIM-Abschlusswiderstände und -Dämpfungsglieder

DÄMPFUNGS-GLIEDER

Dämpfungsglieder mit N- oder 4.3-10-Steckverbindern.

Dämpfungsglieder werden zur Reduktion von Leistung auf ein bestimmtes Maß an einer bestimmten Stelle der Übertragungsstrecke verwendet. Sie können ebenfalls zur Simulation längerer Kabelstrecken mit derselben Einfügedämpfung dienen. Neben den üblichen Dämpfungsgliedern bietet Telegärtner auch Low-PIM-Dämpfungsglieder für Leistungen bis 100 W und Dämpfungen bis zu 30 dB an.

bis 30 dB

Artikelnummer	Steckverbinder	Frequenzbereich	Anschluss- leistung	Dämpfung	PIM (@2×43 dBm)		
J01026A0018	N-Stecker auf N-Buchse	0-10 GHz	2 W	3 dB	-		
J01026A0019	N-Stecker auf N-Buchse	0-10 GHz	2 W	6 dB	-		
J01026A0020	N-Stecker auf N-Buchse	0-10 GHz	2 W	10 dB	-		
J01026A0021	N-Stecker auf N-Buchse	0-10 GHz	2 W	20 dB	-		
J01444A0005	4.3-10-Stecker (Screw) auf 4.3-10-Buchse	698-2700 MHz	50 W	10 dB	≤ -161 dBc		
J01444A0006	4.3-10-Stecker (Screw) auf 4.3-10-Buchse	698-2700 MHz	50 W	20 dB	≤ -161 dBc		
J01444A0007	4.3-10-Stecker (Screw) auf 4.3-10-Buchse	698-2700 MHz	50 W	30 dB	≤ -161 dBc		
J01444A0008	4.3-10-Stecker (Screw) auf 4.3-10-Buchse	698-2700 MHz	100 W	10 dB	≤ -161 dBc		
J01444A0009	4.3-10-Stecker (Screw) auf 4.3-10-Buchse	698-2700 MHz	100 W	20 dB	≤ -161 dBc		
J01444A0010	4.3-10-Stecker (Screw) auf 4.3-10-Buchse	698-2700 MHz	100 W	30 dB	≤ -161 dBc		
H06000A0083	Halterungen-Set für Hochleistungs-Low-PIM-Abschlusswiderstände und -Dämpfungsglieder						

Telegärtner Karl Gärtner GmbH Lerchenstr. 35 D-71144 Steinenbronn Tel. +49 7157/125-0 Fax +49 71 57/1 25-5120 info@telegaertner.comwww.telegaertner.com

Möchten Sie unser gesamtes Mobil-

funk-Produktportfolio kennenlernen?

Dann werfen Sie einen Blick in unseren Katalog

"Components for Mobile Communication Networks"

Ihr Fachhändler: